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Abstract

In the typical supervised learning scenario we are given a set of labeled examples
and we aim to induce a model that captures the regularity between the input and
the class. However, most of the classification algorithms require hundreds or even
thousands of labeled examples to achieve satisfactory performance. Data labels
come at high costs as they require expert knowledge, while unlabeled data is usu-
ally cheap and easy to obtain. The aim of semi-supervised learning is to build
models using both labeled and unlabeled data. In this study, we propose an Iter-
ative Hybrid Algorithm which blends a generative and discriminative model with
the goal to benefit from the advantages of both and to make most use of the un-
labeled data. We conduct experiments on a synthetic data set, which allows us to
easily observe the behavior of the method and compare its performance with two
other methods, the Hybrid Model proposed in [2] and Entropy Minimization [6].
We observe that when there are only few labeled examples, the Iterative Hybrid
Algorithm achieves better performance than the Entropy Minimization method,
but is outperformed by the Hybrid Model. However, as the number of labeled ex-
amples increases the difference between the two methods diminishes. The perfor-
mance of the Entropy Minimization method is still behind the other two methods.

1 Introduction

In the classical supervised learning classification framework, a decision rule is to be learned from a
labeled training set. We assume, we are given a data set comprising n vectors X = {x1,...,z,}
together with the corresponding labels C' = {¢1, ..., ¢, }, in which we assume that the vectors, and
their labels, are drawn independently from the same fixed distribution. Our goal is to learn a model
governed by a set of parameters 6, which when given a new unlabeled instance & can be used to
infer its label ¢, by assigning the class which maximizes p(¢|Z, 9).

Most of the supervised learning methods, however, require hundreds or even thousands of labeled
instances to produce accurate models. Sometimes these labels come at little or no cost at all, for
example when we flag emails as spam or when we rate movies on our favorite social networking
Web site. But many times, obtaining labels can be time-consuming, difficult, and expensive, as they
require the efforts of experienced human annotators. On the other hand, acquiring large amounts of
unlabeled data may be relatively easy and at very low costs. The goal of semi-supervised learning,
is by using large amount of unlabeled data, together with the labeled data, to build better classifiers.

In machine learning, we distinguish two categories of probabilistic models: generative and discrim-
inative. Generative models are built to model how samples from a particular class are generated,
while the discriminative models are concerned with defining the boundaries between the classes.
Each of them has its own strengths. The generative models have very strong modeling power and
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in particular they can easily handle missing values, which makes them interesting for the problem
of semi-supervised learning. The discriminative models, on the other hand, tend to achieve better
classification accuracies. This has motivated many researchers to propose hybrid methods which
blend these two approaches and aim to benefit from the advantages of both. One such approach
has been proposed in [9] and applied for classification of sequences. In a similar vein, in this study
we propose an Iterative Hybrid Algorithm for vectorial data. In this simpler setting, we aim to get
better understanding of the approach and ideas for further development. We conduct experiments
with synthetic two-dimensional data, which allows us to clearly obverse its decisions and compare
its with other methods.

As an academic exercise, the main objectives of this study are: i) to develop deep understanding in
the theoretical foundations of several semi-supervised learning methods, ii) to develop their imple-
mentations and conduct various experiments, and iii) to compare their behavior and results.

The remainder of this report is organized as follows. In section 2, we further detail the difference
of generative and discriminative models to motivate a hybrid approach. In section 4, we present our
proposal for an Iterative Hybrid Algorithm for vectorial data. In section 5, we describe two other
semi-supervised learning approaches which we aim to compare with and in section 6 we present the
experimental results. Finally, in section 7 we conclude.

2 Generative and Discriminative Models

In machine learning, probabilistic models are described as belonging to one of the two categories:
generative or discriminative. Generative models are built to understand how samples from a partic-
ular class were generated, while discriminative models are concerned with defining the boundaries
between the classes.

The generative probabilistic models are developed to capture the interactions between all the vari-
ables of a system, in order to be able to synthesize the possible states of the system. This is achieved
by defining a probability distribution p modeling inputs, hidden variables, and outputs jointly. In
the context of classification, the input is a description of a data instance x and the output is the label
c of this instance. Generative models define the joint probability p(x, c|f), where 0 represents the
parameters of the model. One can also model expert knowledge about the problem by defining a
prior probability p(6), over the set of parameters 6. Most generative probabilistic models are trained
by, what is often called generative learning, i.e. maximizing the full joint distribution with respect
to the parameters 6 as:

N
LG(G) = p(X, C, 9) = p(e) H p(xnycn|9cn)'

n=1

This formulation can be easily extended to make use of unlabeled data by taking the marginal dis-
tribution over the class ¢. If we consider L = {X,, C,} to be the labeled data, and U = X to be
the unlabeled data, we can rewrite L (6) as:

L (0)

p(La U7 9) = p(XL7 CLaXU70)
p(0) p(X1,CL, Xvl|0) = p(0) p(Xr, CL|0) p(Xv0)

p(0) H p(@n, cnlbe, ) H p(@m|0)
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Discriminative models, as opposed to generative ones, are built to capture the boundaries between
the different possible output states of a system, without any interest of modeling the distribution of
the inputs. This is achieved by defining a probability distribution p over the output ¢ conditioned on
the input . This can be expressed as p(c|z, 6), where 0 are the parameters of the model. Having the
training set {X, C}, the discriminative models are trained by maximizing the following objective



function with respect to the parameters 6:

N
Lp(0) = p(C|X,0) = H (cnlzn,6)

As discriminative models directly focus on the boundaries between classes, they usually achieve
better classification performance. This is the main reason why discriminative models have been
widely and successfully used.

While, both methods have different advantages, there is no easy way to combine them. This the
main challenge we wish to undertake in this study, with a particular attention to the application of
hybrid approaches to the problem of semi-supervised learning.

3 Related Work

Although, in this study we focus on the use of hybrid methods for semi-supervised learning, we
would like to point out that the problem of semi-supervised learning has been well-studied in the
literature and many other approaches have been proposed. We provide a small overview of the main
categories of methods. Detailed survey of the literature in the field is given in [12].

Methods using Expectation Maximization with generative mixture models have shown to improve
performance by using unlabeled data, in the cases when the classes produce well clustered data.
Nigam et al. [7] apply the EM algorithm on mixture of multinomial distributions for the task of text
classification. They showed that the resulting classifiers perform better than those trained only on
labeled data. Baluja in [1] uses the same algorithm on a face orientation discrimination task.

Co-training [4] assumes that the features in data set can be split in two sets, each of which is suffi-
cient to train a good classifier and they are conditionally independent of one another given the class.
Initially, two separate classifiers are trained on the labeled data with each feature set. Then, each
classifier classifies the unlabeled data and “teaches” the other classifier with the unlabeled examples
it feels most confident about. Each classifier is re-trained with the new labels and the process is
repeated.

Graph-based semi-supervised methods define a graph where the nodes are labeled and unlabeled
examples in the dataset, and edges reflect similarity of the examples. Different algorithms operating
on the graph have been proposed, including [11, 3]. These methods achieve good performance when
similar instances in the data set have similar labels.

Self-training is another commonly used technique. A classifier is first trained with the small amount
of labeled data and then it is used to classify the unlabeled data. Then, the most confident unla-
beled points, with their predicted labels, are added to the training set. The classier is re-trained and
the procedure is repeated. This method has been successfully applied to several natural language
processing tasks in [8, 10].

We mostly relate our work with the hybrid methods proposed in [2] and [5]. The hybrid model
from [2] is described in details in section 5 and compared to our method in section 6. Another
similar approach is introduced by Bouchard et al. in [5]. They propose a convex combination of the
objective functions of the generative and discriminative model.

4 Iterative Hybrid Algorithm

In this section, we propose an iterative algorithm for blending generative and discriminative models
for semi-supervised learning. The main idea is to use the generative model to incorporate the addi-
tional information brought by the unlabeled data (U), and to use the discriminative model to achieve
better classification accuracy. We also want to make sure that the two models are not far apart from
one another by making constrains on their parameters.

Initially, we train a generative model only on the labeled data (L), and then we use this optimal
solution as a starting position for training a generative model both on L and U. In the main loop
of the algorithm, we train a discriminative model on L, constraining its values to be close to the



ones of the generative model. Then, we label part of U and together with L, and we use it to train a
generative model. We repeat this procedure a number of iterations or until convergence.

More formally, the method can be described as follows. The parameters of the discriminative model
are denoted as 6, and the parameters of the generative model are denoted as 6.

1. Learn 6 on L — 0(9), by maximizing the following objective function:
> log p(c|, )
zeL
2. Learnfon LUU — ), starting from 60, maximizing:
> logp(zle,0) + XY log > p(x|c,6)
zel zeU c’
3. Loop n number of iterations, or until convergence:
3.1. Learn  on L — 0 starting from ("), maximizing:
1 ~
5116 =9I + 3" togp(clz, 0
xeL
3.2. Use 8 to label part of U — Upgpeled, Where the labels are assigned as:

& — ¢ = argmax p(c|z, 0

3.3. Learn @ on L + Upqpereq — 69, maximizing:

Zlogp(x|c,0~)+>\ Z log p(|c, 0)

z€L €ULabeled

The only hyper parameter in the model is A, which controls the influence of the unlabeled data.
Larger values of A imply more influence of U. The final output of the method are the parameters of

the discriminative model § and they are used to predict the labels of new instances.

In addition, one may imagine different strategies of choosing which portion of U is going to be
labeled in each iteration of the main loop. One can simply take random instances or choose the ones
for which the discriminative model is most confident about. We are in favor of the second idea.

5 Other approaches

In this section, we describe two other semi-supervised learning methods, with which we wish to
compare our results. The first is a hybrid model similar in nature to the one we propose. However,
unlike the iterative approach, it aims in optimizing a hybrid objective function. The second, belongs
to the family of entropy minimization methods.

Note the distinction we make between hybrid algorithm and hybrid model. Hybrid algorithms refer
to the algorithms involving two or more models influencing each other, while hybrid models involve
a multi-criteria objective function.

5.1 Hybrid Model

This method is developed by Bishop and Lasserre in [2]. They introduce a multi-criteria objec-
tive function which combines, in a principled way, generative and discriminative models by using
specific priors linking the parameters of the two models.

Given the data set X = {X, Xy}, containing both labeled and unlabeled data, where the classes
of the labeled points are denoted as C,, they propose maximizing the following objective function:

a(X,C,0,0) = ¢(X1,Cr, Xv,0,0)
= p(8,0) p(Cr| X1, 0)p(X 1, Xr|0)
:p(@,é) H p(Cnl Xy, 0) H p(Xm|§)

nelL meLUU



where, # and 0 are the parameters of the discriminative and the generative model, respectively.
Assuming, uniform prior probability of the classes, we can rewrite the above expression as:
i p(z|c, 0) G
p0.0) TT ( 1 (3, sal.).
n€L 2o p(zlc,0) meLUU ¢
the derivation of p(c|x, #) and p(z, ) is given in appendix B.1.

A prior, proposed in [2], which interpolates smoothly between the generative and discriminative
limits with hyper parameter o, can be defined as:

iy o L 16 — 61
0,0) x — —— .
P(a)OCJeXP< 572
To make it easy to compare with the different parameter settings of the other methods, we can
express o in terms of « € [0, 1] as:
2 _ a \'
o(a) = ( T a)

where, for & — 0,02 — 0, results in pure generative model, and when a — 1,02 — oo, results in
pure discriminative model.

For classification of new instances only the 6 parameters are used assigning the most probable class
cas:
x — ¢ = argmax p(c|z, ) = arg max p(z|c, 0).
C c

Full derivation is given in appendix B.1.

5.2 Entropy Minimization Method

This method is introduced in [6] by Grandvalet and Bengio. They use the label entropy on unlabeled
data as a regularizer. By minimizing the entropy, the method assumes a prior which prefers minimal
class overlap. They propose maximizing the following objective function:

S logp(elz,0) + A S S p(c],0) log p(c |, 0)

€L zeU c’eC

where, A is a hyper parameter of the model controlling the influence of the unlabeled data.

6 Experiments

In this section, we illustrate the behavior and measure the performance of each of the methods
described using an example based on synthetic data. The data is chosen to be as simple as possible
and so involves vectors x,, which have only two dimensions/features, and belong to one of two
classes. This allows us to easily visualize the data, in a two-dimensional Euclidean space, and to
perform many experiments with all the methods in a reasonable amount of time. Data is generated
from two Gaussian distributions, one for each class. The class-conditional densities p(z|c), have the
same variance on the y axis, but are horizontally elongated.

In each model, we represent the class-conditional density using an isotropic Gaussian distribution.
As this distribution does not capture the horizontal elongation of the true class distributions, it rep-
resents a form of a model mis-specification. The parameters of the models are the means and the
variances of the Gaussian distributions. To simplify, we assume uniform prior probability of each
classes.

The training data set consists of 200 instances per class, where only several of them are labeled from
each class, and the testing data set consists of 200 instances per class. Each experiment is run with
different random initialization and all methods are tested. The parameters are initialized by setting
the means of the isotropic Gaussians to the mean of the labeled instances, and setting the variances
to one.
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Figure 1: Average performance of each method in 25 runs with random initializations, where only two points
are labeled. The x axis shows the parameter values and the y axis the performance achieved. Note that the
values of the parameters of each method do not have the same semantics and are not directly comparable.
Nonetheless, we can compare their overall performance.

6.1 Experiments with only two labeled points

We ran 25 experiments with fixed values of the parameters of each method and we measured the
classification performance. For the Iterative Hybrid Algorithm and the Entropy Minimization, we
set the values of X in the range of [0, 1] with step of 0.1. For the Hybrid Model, as suggested by the
authors, we test the following values of parameter «: {0, 0.005, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6,0.7,0.8, 0.9, 0.95, 0.975, 0.985, 0.995, 1}.

In figure 1, we show an average of the performance of each method, averaged over all runs with the
same value of the parameter. It is important to note that the values of the parameters of each method,
do not have the same semantics and are not directly comparable. For instance, in the Hybrid Model
a = 0 corresponds to the use of purely generative model, while in the Iterative Hybrid Algorithm
and Entropy Minimization methods A = 0 corresponds to no influence of the unlabeled data in the
final model. Nonetheless, the figure illustrates the overall performance of each method and allows
us to compare them.

We can note the dominance in the performance of the Hybrid Model over the two other methods. The
Iterative Hybrid Algorithm, on the other hand, outperforms Entropy Minimization over all values of
the parameters, except for « = 0. The improved performance at o = 0 is not surprising as, if we
take a closer look at the objective functions of each method, we can notice that this value of « in
the Entropy Minimization corresponds to a purely discriminative model and in the Iterative Hybrid
Algorithm corresponds to a mixture of both discriminative and generative model, which we know is
misspecified.

Taking a closer look at the performance curves of each run in figure 2, we can note that it is very hard
to fix the parameter of each method. In other words, the best performance of the methods in each
run is obtained for different values of the parameters. Moreover, we observe that the Entropy Mini-
mization method is very unstable and its performance may drastically change with small changes of
the parameter value. This shows that the method is very sensitive and lacks robustness, making its
use in practical scenarios very hard.

This, however, is not the case with the two other methods. Although, we do not know how to fix
the parameter values, we can note that their performance is not sensitive to the small changes of
the parameters. In practical use, one may image an iterative process where we start at one value of
parameter and by adjusting it we can converge to a satisfactory performance.
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Figure 2: Performance curves over all runs. Note that the parameters have different semantics for each method
and are not directly comparable.

6.2 Particular cases

To develop a deeper understanding of the difference between the behavior of the Iterative Hybrid
Algorithm and the Hybrid Model, we have decided to look closer at some particular cases. In
specific, the cases where the decision boundary induced by the labeled points is far from the real
boundary between the classes.

We observe that in such cases the overlap on the = axis between the labeled points of each class
plays an important role. When there is no overlap, in overall both methods tend to achieve good
performance. Although this depends from one case to another. We exhibit one case where the

Figure 3: A case where there is no overlap between the labeled points of each class on the x axis. The
Iterative Hybrid Algorithm is shown on the top and the Hybrid Model on the bottom. Each figure corresponds
to a different value of the parameter, increasing from left to right. The crosses denote the unlabeled points,
while the dots denote the labeled points. The green area corresponds to the points that are assigned to the red
class, while the yellow area corresponds to the points which are assigned to the blue class. The circles denote
the contours of the isotropic Gaussians. The two methods take a different path. Only the Iterative Hybrid
Algorithm, for A = 0.2, converges close to the original boundary between the classes.



Iterative Hybrid Algorithm is dominant (figure 3), and one case where both converge to a satisfactory
solution (figure 4).

However, in the cases where there is an overlap on the = axis, we observe that the Hybrid Model is
dominant. Figure 5, shows one such example. We believe that this behavior of the Iterative Hybrid
Algorithm happens because the model of one of the classes, in particular the one whose labeled
instances are further apart on the x axis, in the early iterations converges to a higher variance of
the isotropic Gaussian causing it to incorrectly label instances from the other class. This error is
reinforced in the later iterations of the algorithm, causing a dominance of the model of one class and
convergence to an unsatisfactory solution. This is illustrated in figure 5.

Figure 4: Another case where there is no overlap between the labeled points of each class on the z axis. The
Iterative Hybrid Algorithm is shown on the top and the Hybrid Model on the bottom. Each figure corresponds
to a different value of the parameter, increasing from left to right. Both methods (for A = 1 and o = 0.4)
converge to solutions close to the original boundary between the classes.

A= 0.600

o= 0800

Figure 5: A case where there is an overlap overlap between the labeled points of each class on the z axis.
The Iterative Hybrid Algorithm is shown on the top and the Hybrid Model on the bottom. The Iterative Hybrid
Algorithm correctly classifies the labeled points, but fails to converge to the real boundary between the classes.
However, the Hybrid Model for o = 0.8 converges to a satisfactory solution.
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Figure 6: Comparison of the average performance of each method with different number of labeled points.

6.3 Different number of labeled points

Finally, we observe how the performance of the methods changes when the number of labeled in-
stances increases. Figure 6 depicts the mean performance of all methods in several runs with 2, 4,
and 6 labeled examples. As before, we note that the parameters of each method do not have the same
meaning and are not directly comparable, but nevertheless we can compare the overall performance
of the methods. In appendices C.1 and C.2, we show the performance of each run with 4 and 6
labeled points, as well as the standard deviations of the performance of each method.

It can be observed that as the number of labeled example increases, the difference in the performance
between the Iterative Hybrid Algorithm and the Hybrid Model vanishes. The Entropy Minimization
method, although has increased performance, is still outperformed by the two other methods.

7 Conclusions

We have studied methods combining generative and discriminative models in the setting of semi-
supervised learning. We have proposed an Iterative Hybrid Algorithm and compared its performance
with two other methods, the Hybrid Model and Entropy Minimization. We have conducted various
experiments with a syntactic data set consisting of two Gaussian distributions. We observe that
when number of labeled instances is small the Iterative Hybrid Algorithm dominates the Entropy
Minimization method, but it is outperformed by the Hybrid Model. Looking at particular cases, we
conclude that in the scenarios where there is an overlap on the x axis between the labeled points
of each class the two methods behave differently and the Hybrid Model tends to converge to an
satisfactory solution more often. Finally, when the number of the labeled instances increases the
difference between the Iterative Hybrid Algorithm and the Hybrid Model diminishes, while both
outperform the Entropy Minimization method.
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A Implementation

The implementation of all the methods discussed is submitted as a supplementary material. The
programing language of choice was Python, as it allows rapid development and provides an excellent
range of tools for scientific computing. Data generation and manipulation was done with NumPy,
optimization was done with SciPy, and all the plots were produced using PyPlot.

B Complements to subsection 5.1, Hybrid Model

B.1 Derivations

If we assume uniform prior probability of each class we can rewrite p(c|z, 6) and p(z, 0) as:

_ plxle,0)p(cld) _ p(xle,0)p(cld)
PAnO =200 = el 0)
p(zlc,0)p(c,0)  p(xlc,0)

Tl 0)p(e8) T X, p(xle,6)

p(:l:,é) = ZP(I7C/7§) = Zp(x|c/’é)p(c'7é) = Zp(:c‘cl,é).

For classification, only the 6 parameters of the model are used. New instances are classified by
assigning the most probable class c as:

x — ¢ = argmax p(c|z, 0)
c

_ p(zlc,0)
= arg max

e x|, 0)

= arg max p(x|c, 0)
c

In the first step, we assume uniform prior probability p(c|d), for each c. In the second step the
denominator ), p(z|c’, §) is constant over all classes and can be ignored.

C Complements to section 6, Experiments

C.1 Results of the experiments with only two labeled points
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Figure 7: Mean performance and standard deviation of each method, over all runs.
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C.2 Results of the experiments with four labeled points
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Figure 8: Performance curves over all runs. Note that the parameters have different semantics for
each method and are not directly comparable.
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Figure 9: Mean performance and standard deviation of each method, over all runs.
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C.3 Results of the experiments with six labeled points
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Figure 10: Performance curves over all runs. Note that the parameters have different semantics for
each method and are not directly comparable.
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Figure 11: Mean performance and standard deviation of each method, over all runs.
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