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Abstract

In the absence of an experiment or quasi-experiment, causal inference typically
rests on the assumption that conditioning on (i.e., controlling or adjusting for)
observed covariates is sufficient to eliminate confounding. This assumption is
typically controversial, if not implausible. Even when employing rich, high-
dimensional covariates, which may make this assumption more plausible, we may
suspect that there is some unobserved confounding. Even worse, controlling for
covariates that are instrumental variables may instead increase bias. Here we use a
common form of high-dimensional data about individuals — a social network —
for counterfactual prediction, which may (¢) encode information about the nodes’
latent characteristics, and (i) nodes may selecting into treatment according to
their network positions. We critically examine how to use network information
to improve causal inference, especially when concerned about the presence of
remaining unobserved confounding. We propose a framework to address the bias
amplification due to controlling for instruments or community-level fixed effects.
In particular, we propose a representation learning approach with group lasso
regularization, which results in learning representations that are highly associated
with both the treatment and the outcome. Simulations with empirical social network
data demonstrate the effectiveness of our approach and illustrate the potential of
using network information for observational inference in general.

1 Introduction

Randomized experiments play a central role in science and practice, especially in the Internet
industry where rapid experimentation (e.g., A/B testing) is possible. But we often lack the ability
to randomly assign some treatments of the greatest interest, requiring reliance on observational
(i.e., non-experimental) data to make causal inferences and subsequent decisions. Here we examine
opportunities for observational causal inference to make use of rich, high-dimensional data about
individuals, particularly that encoded in a network.

Credible causal inference from observational data has long been desired, if illusive, in many fields
including public health [[1]], economics [2, 3], marketing [4]], and political science. Observational
causal inference also plays an explicit role in many recent analyses of traces of online behavior,
sometimes leading to development or evaluation of methods [5} |6, [7, I8} 9, [10]. In the absence
of a known source of random variation in treatments, analysis is performing by matching on or
modeling using socio-demographic or other covariates relevant to the behavior of interest. There
has been a rich literature focusing on estimating treatment effects with increasingly rich data and
sophisticated techniques, e.g., propensity score matching [[11], nearest neighbor matching [12], and
tree-based methods [[13]. Recently, with the gaining popularity of deep neural networks, several
representation learning approaches to causal inference have been proposed. Johansson et al. [[14]
borrow ideas from domain adaptation to propose a representation learning approach to observational
causal inference. Their framework learns representations that are (¢) predictive of the outcomes,
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but also (i¢) balanced across the treatment and control units. In a following-up paper, Shalit et
al. [[15] provide a generalization bound for estimating individual-level causal effect under the strong
ignorability assumption. Yao et al. [16] utilize local similarity information together with the global
balance measure into the treatment effect estimation to decrease the generalization error.

These studies assume that all relevant confounding variables are observed [14} 12, [15, [17]], or at
least that we have suitable, if noisy, measures of these confounders. However, it is unrealistic
to measure all possible confounders in real-world observational studies. When this assumption
is violated, controlling for observed covariates may instead amplify bias [18} [19} [20]. There are
two mechanisms by which bias amplification happens. The first mechanism is “Z-bias”, referring
to the controlling of instrumental variables. Many studies have demonstrated that controlling for
instrumental variables (i.e., variables related to treatment but not directly influencing the outcome)
can amplify bias [[18}[19,20]], as after adjusting for an instrument, remaining variation in the treatment
is driven more by the unobserved confounder [21]. Second, [18]] show that the common practice of
adjusting for many categorical variables with fixed effects may also induce bias [[18]]. This can be
problematic, especially in network studies with community-level fixed effects, i.e., when the effect of
the community does not co-vary in the treatment and the outcome.

Fortunately, in many cases, besides covariates about the units (e.g., demographic information), we
also know how the units are related to each other. For instance, in the analysis of social media data, we
often observe users’ characteristics and behaviors, but we also observe their social network, i.e., the
links between them. This additional high-dimensional information can be useful in answering causal
questions in two ways. First, due to homophily [22], the social network can encode information about
latent attributes that confound the treatment and outcome’s causal relationship. Second, individuals
may self-select into treatment according to their position in the network. For instance, students living
in the same dorm are more likely to be exposed to the same education program, and consequently,
are more likely to participate in the program. With these motivations, the objective of this paper is to
study how network information can be used for counterfactual inference, and propose a method to
utilize such information effectively.

Though promising, there is a lack of effective method in utilizing network information for causal
identification. The high-dimensional network—in the form of adjacency matrix or graph Laplacian—
makes it difficult to apply traditional matching methods directly. More specifically, the bias of the
matching estimator grows with the dimensionality of the covariates [23]]. Auerbach [24] and Shalit
et al. [[15]] utilize network information by assuming that network contains sufficient information for
causal identification. [[15] propose a two-step approach by inferring the latent network positions and
then run a regression using these covariates as controls. [24] match individuals who have similar
network positions.

Here we study how network information can be used to improve counterfactual inference. We propose
a deep learning model designed to reduce bias amplification due to controlling for instrumental vari-
ables. In particular, we introduce a representation learning approach with group lasso regularization,
which enforces the learned representation to be highly associated with both the treatment and the
outcome. In other words, if the representations associate strongly with the treatment but weakly with
the outcome, they will be omitted. To achieve this, we use group lasso regularization to select the
representations learned from the network and jointly regularize the coefficients of the representations
on the treatment and the outcome [25]].

To demonstrate the effectiveness of this approach, we run naturalistic simulations using the Facebook
100 dataset and illustrate the potential of using network information for observational inference in
general. We also explore how to tune hyperparameters when the goal is to infer the causal effect
rather than maximize prediction accuracy, as in most machine learning scenarios.

To summarize, the contributions of our study are the following:

e We explore and demonstrate the effectiveness of using network information for counterfac-
tual inferences, including proxies for the latent positions and treatment assignments with
network characteristics.

e We conceptualize conditions in which the network information can be used in counterfactual
predictions.

e We propose a novel framework—representation learning with group lasso regularization—to
minimize bias amplification and bias unmasking driven by instrumental variables and fixed
effects.



2 Problem formulation

The goal of our study is to estimate the average treatment effect (ATE) by conditioning on the
observed covariates and the network information. We may also wish to estimate conditional average
treatment effects (CATEs) for particular subgroups. We use potential outcomes notation [26] to
define these quantities. For an individual ¢, we observe i’s covariates X, ¢’s row of the adjacency
matrix G;, and whether they were assigned to the treatment or control 7; € {0, 1}. There are two

corresponding potential outcomes Yo(i) and Yl(i). For notation convenience, we use bold symbols to
represent vectors or matrices, and non-bold symbols to represent scalars. The treatment effect (CATE)

for ¢ is the difference between their potential outcomes under treatment and control, Yl(l) - YO(Z). This
quantity is unobservable because it involves ¢ being observed in two different states. However, we
may be able to summarize treatment effects of many units, some of which are observed in treatment
and some in control. The average treatment effect (ATE) is

ATE = E(v" - v{")

, , (D

= E(Yfl)) - E(Yo(l))
In order to estimate the ATE, which involves means potential outcomes and not yet any observed
outcomes, researchers typically impose the following assumptions:

Assumption 1 Stable Unit Treatment Value Assumption (SUTVA): The potential outcomes for any
units do not vary with the treatments assigned to other units, and for each unit, there are no differences
in the forms or versions of each treatment level, which lead to different potential outcomes.

Assumption 2 (Consistency). The potential outcome of treatment t equals to the observed outcome

if the actual treatment received is t, i.e., if T; = 0, we observe Yo(i) and if T; = 1, we observe Yl(i).

Assumption 3 (Positivity). For any set of covariates x, the probability to receive treatment 0 or 1 is
positive, i.e., 0 < p(T = t|X = x) < 1,V and z.

Assumption 4 (Ignorability). Conditional on observed covariates, the potential outcomes are
independent of which treatment was received, i.e., (Y1 Z), 1(2)) U T X;

Ignorability (i.e., conditional unconfoundedness, selection on observables, no-hidden confounders) is
typically a controversial assumption in observational studies. It requires that the outcome variables are
independent of treatment assignment given observed covariate X [[14,[12]. However, this assumption
is unrealistic in practice since it is typically impossible to directly measure confounders in the real
world. There are some settings where this might be plausible, if we know something about how units
select into treatment; for example, we may know that users were treated based on predictions of a
machine learning model plus noise, but perhaps have not retained the details of the model, but only
which variables it used. But in other cases, we have limited knowledge of how units became treated,
as often units are self-selecting into treatment based on information known only to them. We consider
two families of cases that relax this assumption somewhat. One in which we have noisy measures of
all unobserved confounders and one in which there are further unobserved confounders.

Networks are common data sources and may reveal relevant latent information due to homophily and
past social influence [22]. Therefore, we use the information encoded in the network to account for
some of the otherwise unobserved confounders. Our empirical evaluation uses a social network, but
the ideas are readily applicable to other similar data structures, including bipartite graphs.

To illustrate how a network can be useful in causal inference, we illustrate with four causal directed
acyclic graphs (DAGs; Figure[I). We can use the backdoor criterion [27] to determine in which
DAGs the ATE of T on Y is identified.

In Figure[I|a) and (c), network reveals the latent covariates. In Figure[T](b) and (d), network positions
influence one’s exposures to treatments. Conditional on X and ®, ignorability holds for the models
in Figures|[I] (a) and (b), but not for the models in Figures[I|(c) and (d). In Figure[]a), the observed
covariates X and the latent position ® inferred from the network G both influence the treatment
and the outcome. In addition to ® and X, one’s network position also influences the treatment
and outcome in Figure [I(b). In these two figures, there exists no confounder other than X and @,
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Figure 1: Illustration of the causal structures. X: observed non-network covariates; G: network; ®:
latent representation of the network; H: unobserved covariates; T treatment; Y: outcomes. White,
blue and grey nodes correspond to observed variables, variables that are inferred from the observed
and unobserved variables.

ignorability holds, and observed variables and proxies are causally sufficient to estimate the effect of
T on Y. Effective usage of network information helps to identify the treatment effect.

In Figure[T](c)-(d), the latent confounders H contribute to both T and Y. In this case, ignorability is
typically violated and the ATE is not identified because {X, ®, G} are not sufficient to block the
backdoor path between T and X. Even worse, if the weights on the dashed arrow are zero, X, ® and
G can be instrumental variables, which may amplify bias if being controlled [20]; similar problems
apply if they are “nearly” instruments, having only small effects on the outcome.

Adjusting for covariates will amplify the bias in the following conditions. Readers are encouraged to
refer to Middleton et al. [18|] and Pearl [20]] for more details.

o [nstrumental variable. If instrumental variables are controlled, bias will be amplified. The
bias amplification will be more problematic if the controlled covariates account for a great
deal of variation in the instrument. However, with the existing representation learning
framework, such instrumental variables are more likely to be selected due to its strong
predictive power in the treatment.

e Fixed effects. Including coefficients for each level of a categorical variable (“fixed effects”)
is often thought to be useful for absorbing unmeasured group-level confounding. They can
function as bias amplifiers when the treatment and outcome coefficients for the same level
of the categorical variable have little correlation.

3 Method

In this section, we describe our method to utilize information in the network effectively and to
reduce potential bias amplification. In particular, our objective function predicts the treatment and
the outcome simultaneously. A desirable property is that if certain representation associates weakly
with the outcome and strongly with the treatment, it should not be included in the model. With these
properties, we aim to learn representations whose coefficients are large on both the treatment and the
outcome.

To achieve this, we use group lasso to select the representations learned from the network and, in
particular, regularize the coefficients of such representations on the treatment and the outcome [25].
In this case, the groups in the group lasso are the coefficients that correspond to the same embedding
dimension in the treatment and outcome prediction layers. See illustration in Figure 2]



Formally, we define the model as follows:
W = p(AW W),
o = p(@ VW) (fori=2...k),
§ = [®W); X; t]wy + Aa[wy ]2,

i = o([®%); XTwy) + Aa||we |2, 2)
Yloss = HQ - yHQa
tloss = H(Lzu t)a

L= ’Yyloss'i_(l - V)tloss + )\g”wvatHQa

where W) ... W) are fully-connected layers; wy, wy are the weights in the final layers; || o |2
correspond to the 5 norm; [e; o] is matrix concatenation; p is the ReLU and o is the sigmoid function;
H is cross-entropy; and finally the group lasso term is:

L
llwy, welly = 3 A/ (wi)2 + (w)2. 3)
=1

The hyper-parameters A2, and A4 control the importance of the I and group lasso regularization
terms, and «y trades off minimizing the outcome versus treatment prediction loss.

At a high-level, the model consists of two parts: an embedding network and a prediction network. In
the embedding network, we feed the adjacency matrix A and learn an embedding ®. The layers in the
embedding network are fully connected. In the prediction network, we use the network embeddings
®, and the observed covariates X to simultaneously predict the treatment and the outcome.
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Figure 2: Illustration of the model architecture. The model consists of two main parts: an embedding
network and a prediction network. The goal of the embedding network is to learn the representations
from the network input A. The output ® is then feed into the prediction network where we jointly
predict the outcome Y and treatment T. w; and w,, are regularized jointly via group lasso.

4 Evaluation

Datasets. To test our approach, we perform a naturalistic simulation: we take the network and
covariate information form a real-world dataset, but we use a model to simulate the treatment
assignment and the outcomes. We use data from the Facebook 100 [28| dataset, which contains
data from the first 100 U.S. colleges that were on the platform in 2005. It includes (¢) the online
friendship networks among the users and (¢7) the users’ attributes, including student/faculty status,
gender, major, dorm, year, and their high school. We also run the Louvain community detection



Table 1: Error in ATE when network positions reveal relevant characteristics of individuals

CFR (covariates) CFR (covariates + network)  Proposed

Reed 0.61 0.61 0.08
Haverford 0.53 0.08 0.02
Caltech 1.20 1.20 0.65

Table 2: Error in ATE when the community influences the treatment

CFR (covariates) CFR (covariates + network) Proposed

Reed 0.50 0.50 0.34
Haverford 0.33 1.05 0.32
Caltech 0.70 0.70 0.66

algorithm [30] and assign each user to a community based on their network position. In order to
run repeated evaluations, we focus on the three smallest colleges: Reed College (Reed), California
Institute of Technology (Caltech) and Haverford College (Haverford).

We treat each covariate as an observed or unobserved confounder, or as an instrument. We simulate
the treatment assignments and the outcomes as follows. First, we generate the treatment (w;) and
outcomes (w,) weights: (a) for confounders we generate the treatment and outcome weights jointly
by drawing from a 2D Gaussian distribution with mean [0, 0] and covariance [1.0,0.5; 0.5, 1.0], (b)
for instruments we generate the treatment weights by drawing them from 1D Gaussian with mean 0
and variance 1 and set the outcome weights to 0. Second, we compute the propensity scores,

w=o(x- w), 4)

which is a linear model where o is the logistic function, and we generate the treatment assignment
t by drawing from a Bernoulli distribution with probability of success p. Finally, to generate the
outcomes we multiply the outcome weights by the observed covariates and add the ground truth ATE
if the unit is assigned to treatment:

y=a-w, + At 5)
Settings. We explore two experimental settings where the network plays a different role:

e Network positions reveal latent and relevant characteristics of individuals (Figure[Ik). However,
one’s network positions do not directly appear in the treatment and outcome function. More
specifically, we set the person’s status (student or faculty) and gender as observed confounders, the
person’s dorm and year as unobserved confounders, and their major as an instrument. Note that
controlling for the major may amplify bias.

e The community in which each individual belongs to influences the treatment they receive (Fig-
ure Eh), but it does not influence the outcome. That is, we explore the robustness of the method
with a categorical variable describing network position that is an instrument. We keep the same
observed and unobserved confounders.

We compare our method to two variations of the Counterfactual Regression (CFR) model [[15]], which
uses Wasserstein distance to balance the distribution between the treatment and control group: one
only takes in covariates, and the other takes in both the covariates and the network.

The methods are evaluated in the following way. We first select the best hyper-parameters using
10-fold cross-validation. The model is trained on the nine splits of the data, and evaluated, according
to the average prediction error on the outcome, on the remaining one split. The best hyperparameter
is chosen to be the set that has the smallest average prediction error on the validation sets. After that,
we train the full dataset with the chosen hyperparameters and compute the average treatment effect
using the full data set.

The performance for setting 1 is show in Table[I] Using the network with CFR reduces bias for
Haverford, but not for Reed and Caltech. The proposed method reduces error in all three cases.



The performance for setting 2, where community membership is a categorical instrument, are shown
in Table 2] Here using the network with CFR increases bias in the same subset where it previously
reduced bias (Haverford), reflecting that some aspects of latent position are functioning as bias
amplifying instruments. On the other hand, the proposed method constributes to reduce bias in all
cases, albeit less so than in setting 1.

5 Related work

Here we highlight the relationship with other work on representation learning for causal inference
and network data.

There has been a recent interest in using representation learning in causal inference. This literature
is started by Johansson et al. [14]], and followed by [15] with theoretical guarantees. In particular,
they tackled the problem by using representation learning in estimating individual treatment effects.
[[L6l [12] further this literature by adding balanced representation to reduce the high-dimensional
covariates to a lower subspace for causal inference. Alaa and van der Schaar [31] proposes an
approach to infer the individual causal effect of a treatment using a Bayesian approach to learn the
treatment effects through a multitask Gaussian process prior to the population’s potential outcomes.
This literature builds upon the unconfoundedness assumption, which is unrealistic in most real-world
situations.

There is also work using network data to account for otherwise unobserved confounding. [32] shows
that when the network grows according to either a latent community model or continuous latent space
model, latent attributes can be consistently estimated from the global pattern of social ties, and hence
the causal estimates can be identified. This is based on the assumption that after controlling for the
network connections, there is no additional information on the treatment and the control function
one does not observe. A similar assumption is used in [24]. Auerbach [24] introduces a method
based on matching pairs of agents with similar columns of G2. For a class of network formation
models, the columns of this matrix characterize all of the identifiable information about individual
linking behavior. Unlike the present work, both of these papers assumme that there is not additional
unobserved confounding.

Louizos et al. [[17] is closer to our study, which also deals with hidden confounders and does not
constrain the relationship between the observed covariates and the latent attributes. They propose to
learn the causal effect with noisy measurement of the hidden confounders using a standard variational
autoencoder framework. This framework helps to relax the parametric assumptions on the relationship
between latent and observed covariates. This paper can be regarded as a non-parametric version of
Shalizi and McFowland III [32]]. While Shalizi and McFowland III [32] rely on prior knowledge
about the network formation process. However, Louizos et al. [17] rely on the neural network to
learn such complex relationships. They focuses only on the causal graph, as depicted in Figure [T[a),
in which the observed covariates contain all the variations in the unobserved confounders. This is a
special case of our framework and will perform poorly in the case of unobserved confounding and
bias amplification or bias unmasking.

6 Conclusion

Networks, if utilized effectively, can provide information about otherwise unobserved variables of
the nodes they connect. Yet other unobserved variables may still be present, such that naively using
this data may even increase bias. This type of bias amplification is neglected by most of the literature,
including recent developments in computer science on utilizing high-dimensional covariates in causal
inference.

In this paper, we provide the conditions in which network information can amplify or unmask the bias.
We propose a framework to utilize the information encoded network for counterfactual inferences
effectively. Our framework integrates representation learning with group lasso regularization to
minimize bias amplification driven by instrumental variables and near instruments, such as community
fixed effects. We apply our method to the naturalistic simulations on empirical data, showing that our
method outperforms the state-of-the-art.



An important future direction is to provide theoretical bound for the bias in the average treatment
effect estimation when networks encode relevant, but not all, information for treatment and outcome
predictions.
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